Search results for "Fermi liquid theory"
showing 10 items of 23 documents
The Topological Phase Transitions Related to Fermion Condensate
2014
In this chapter, we consider so-called topological phase transitions, taking place in normal Fermi liquid. In other words, here we are dealing with different instabilities of normal Fermi liquids relative to several kinds of perturbations of initial quasiparticle spectrum \(\varepsilon (p)\) and occupation numbers \(n(p)\) associated with the emergence of a multi-connected Fermi surface. Depending on the parameters and analytical properties of the Landau interaction, such instabilities lead to several possible types of restructuring of initial Landau Fermi liquid ground state. This restructuring generates topologically distinct phases. One of them is the FC discussed above, another one belo…
Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities
2007
Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle–hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle–hole symmetry in the excitation spectra is violated making both the …
Violation of the Time-Reversal and Particle-Hole Symmetries in Strongly Correlated Fermi Systems: A Review
2020
In this review, we consider the time reversal T and particle-antiparticle C symmetries that, being most fundamental, can be violated at microscopic level by a weak interaction. The notable example here is from condensed matter, where strongly correlated Fermi systems like heavy-fermion metals and high Tc superconductors exhibit C and T symmetries violation due to so-called non-Fermi liquid (NFL) behavior. In these systems, tunneling differential conductivity (or resistivity) is a very sensitive tool to experimentally test the above symmetry break. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition (FCQPT), it exhibits t…
Magnetic-field-induced reentrance of Fermi-liquid behavior and spin-lattice relaxation rates in
2009
Abstract A strong departure from Landau–Fermi liquid (LFL) behavior have been recently revealed in observed anomalies in both the magnetic susceptibility χ and the muon and 63Cu nuclear spin-lattice relaxation rates 1 / T 1 of YbCu 5 − x Au x ( x = 0.6 ). We show that the above anomalies along with magnetic-field-induced reentrance of LFL properties are indeed determined by the dependence of the quasiparticle effective mass M ∗ on magnetic field B and temperature T and demonstrate that violations of the Korringa law also come from M ∗ ( B , T ) dependence. We obtain this dependence theoretically utilizing our approach based on fermion condensation quantum phase transition (FCQPT) notion. Ou…
Neutron Fermi liquids under the presence of a strong magnetic field with effective nuclear forces
2009
Landau's Fermi liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi liquid parameters, the contribution of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.
Microwave spectroscopy on heavy-fermion systems: probing the dynamics of charges and magnetic moments
2013
Investigating solids with light gives direct access to charge dynamics, electronic and magnetic excitations. For heavy fermions, one has to adjust the frequency of the probing light to the small characteristic energy scales, leading to spectroscopy with microwaves. We review general concepts of the frequency-dependent conductivity of heavy fermions, including the slow Drude relaxation and the transition to a superconducting state, which we also demonstrate with experimental data taken on UPd2Al3. We discuss the optical response of a Fermi liquid and how it might be observed in heavy fermions. Microwave studies with focus on quantum criticality in heavy fermions concern the charge response, …
Highly Correlated Fermi Liquid in Heavy-Fermion Metals: Magnetic Properties
2014
In this chapter we show how the FCQPT theory works, when describing the behavior of HF metals under the application of magnetic field. We show that a large body of experimental data regarding the thermodynamic, transport and relaxation properties collected in measurements on HF metals can be well explained. It is demonstrated that the experimental data exhibit the scaling behavior.
Landau Fermi Liquid Theory and Beyond
2014
In this chapter we consider the Landau theory of the Fermi liquid that has a long history and remarkable results in describing a numerous properties of the electron liquid in ordinary metals and Fermi liquids of the \(^3\)He type. The theory is based on the assumption that elementary excitations determine the physics at low temperatures, resembling that of weakly interacting Fermi gas. These excitations behave as quasiparticles with a certain effective mass. The effective mass \(M^*\) exhibits a simple universal behavior, for it is independent of the temperature, pressure, and magnetic field strength and is a parameter of the theory. Microscopically deriving the equation determining the eff…
Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice
2008
The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …
Violation of the Wiedemann-Franz Law in HF Metals
2014
Experimental observations of the much-studied compounds CeCoIn\(_5\) and YbRh\(_2\)Si\(_2\) at vanishing temperatures carefully probe the nature of their magnetic-field-tuned QCPs. The violation of Wiedemann-Franz (WF) law, along with jumps revealed both in the residual resistivity \(\rho _0\) and the Hall resistivity \(R_H\), provide vital clues to the origin of their non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with FC forming flat bands.